On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms

نویسندگان

  • Anh Huy Phan
  • Petr Tichavský
  • Andrzej Cichocki
چکیده

Product between mode-n unfolding Y(n) of an N-D tensor Y and Khatri-Rao products of (N − 1) factor matrices A(m), m = 1, . . . , n − 1, n + 1, . . . , N exists in algorithms for CANDECOMP/PARAFAC (CP). If Y is an error tensor of a tensor approximation, this product is the gradient of a cost function with respect to factors, and has the largest workload in most CP algorithms. In this paper, a fast method to compute this product is proposed. Experimental verification shows that the fast CP gradient can accelerate the CP ALS algorithm 2 times and 8 times faster for factorizations of 3-D and 4-D tensors, and the speed-up ratios can be 20-30 times for higher dimensional tensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC

The damped Gauss-Newton (dGN) algorithm for CANDECOMP/PARAFAC (CP) decomposition can handle the challenges of collinearity of factors and different magnitudes of factors; nevertheless, for factorization of an N-D tensor of size I1 × · · · × IN with rank R, the algorithm is computationally demanding due to construction of large approximate Hessian of size (RT × RT ) and its inversion where T = n...

متن کامل

An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors

The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Oft...

متن کامل

Tensor Decompositions with Banded Matrix Factors

The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...

متن کامل

Fast and Guaranteed Tensor Decomposition via Sketching

Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tenso...

متن کامل

Consensus-based In-Network Computation of the PARAFAC Decomposition

Higher-order tensor analysis is a multi-disciplinary tool widely used in numerous application areas involving data analysis such as psychometrics, chemometrics, and signal processing, just to mention a few. The parallel factor (PARAFAC) decomposition, also known by the acronym CP (standing for “CANDECOMP/PARAFAC” or yet “canonical polyadic”) is the most popular tensor decomposition. Its widespr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1204.1586  شماره 

صفحات  -

تاریخ انتشار 2012